Step of Proof: equiv_rel_subtyping
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
equiv
rel
subtyping
:
1.
T
: Type
2.
R
:
T
T
Type
3.
Q
:
T
4.
a
:
T
.
R
(
a
,
a
)
5.
a
,
b
:
T
.
R
(
a
,
b
)
R
(
b
,
a
)
6.
a
,
b
,
c
:
T
.
R
(
a
,
b
)
R
(
b
,
c
)
R
(
a
,
c
)
7.
a
: {
z
:
T
|
Q
(
z
)}
R
(
a
,
a
)
latex
by ((BHyp 4)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
.
Definitions
t
T
,
x
:
A
.
B
(
x
)
origin